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SECONDARY FLOW IN DIFFUSING CASCADES

Research Objectives

a. Develop a three dimensional rotational flow analysis and
a numerical solution procedure that can be used to determine the

flow in the passages of a cascade with large deflection angles.

b. Construct a test rig to study the secondary flow phenomena

in diffusion cascades with large deflections.

c. Obtain measurements of flow velocity, direction of
flow, endwall static pressure and total pressure losses for a
range of inlet Mach number representative of exit guide vanes.

d. Perform a parametric studies using the theoretical
analysis and the experimental data to determine the effect of

area diffusion on the secondary vorticity strength.

Status of the Research Efforts

1. The Analytical Work

i. The Problem Formulation:

The appropriate formulation for the equations governing the
motion of the three dimensional inviscid rotational flow has been
accomplished. The primary dependent variables in the formulation
are the three flow velocity components and the through flow

vorticity component.

The momentum equation is expressed as:

Vxig==2=9p




where V is the velocity vector, P is the total pressure, p is
the fluid density, and Q is the vorticity vector which is

defined as:
Q=97 xV (2)

For simplicity the solution is obtained for incompressible flow,

in which case, the continuity equation is given by:
7.V =0 (3)

The momentum equation (1), is not the suitable form to be used
since the pressure is not one of the dependent variables in the
formulation. Therefore, the Helmholtz equation, which is given

below, is used instead of equation (1),

V-9 =2a -« VW (4)

Equation (4) can be easily derived using equations (1), (2) and
(3). Equations (2), (3) and (4) are the governing equations,
and are solved for the three velocity components and the through

vorticity component of the three dimensional rotational flow.

ii. The Numerical Solution:

The through flow velocity and through flow vorticity
components are computed from Helmholtz equation using a marching
technique. The secondary flow velocities on the other hand are
determined from the simultaneous solution of the continuity
equation and the through flow vorticity equation. The approach
used in the numerical solution is iterative since the secondary
flow velocities appear in the convective terms and the through

flow velocity and vorticity contribute to the source and




rotationality terms in the cross planes. These will be referred
to as the outer iterations, to distinguish them from those used
in the numerical solutions for the secondary velocities.

In order to develop and test the numerical solution without
the unnecessary added complications of the leading edge vortex, f
a simple duct geometry was used, in order to be able to compare
the results of the computations with the experimental data of
reference 1, and also with the computational results of

references 2 and 3.

e

A great part of the effort in developing the numefical
methods have been devoted to the methods of computing the
secondary velocities. The governing equations for the secondary

velocity components are:
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Where uy and u, are the velocity components in the radial and

axial directions (xl, xz) respectively, S is the source/sink

term, and w is the through flow vorticity component.
Equation (5) represents the principal of conservation of mass
when the source term, S, is expressed in terms of the through
flow velocity gradient.

Two different approaches have been tried for the solution
of the above equations. 1In the first approach, the secondary

velocities were expressed in terms of a stream function ¢y and




a potential function ¢ as follows:

39 1 Y
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The governing equations for the potential and stream functions
zre obtained from the substitution of equations (7) and (8)

into equations (5) and (6):
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where n is the direction perpendicular to the solid boundaries.

In the second approach, cross-differentiation was used to
obtain two higher order equations in the secondary velocities
Uy, Uy By differentiating equation (5) with respect to X

and equation (6) with respect to X, and adding the results, one

obtains:
2 2
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and by differentiating equation (5) with respect to X, and

equation (6) with respect to x, and subtracting the results,

1
one obtains:
2 2
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The velocity component, u o, perpendicular to a solid boundary

must vanish.
u =0 (15)

In this approach, the required additional boundary conditions for
nonviscous flow are obtained from equation (6) written at the

boundaries
panal W (16)

where u is the velocity component in the direction tangent to
the boundary.

It is clear from equations (9) and (10) and from equations
(13) and (14) that in both approaches, the solution of two
second order partial differential equations of the Poisson type
is required. According to equations (1l1) and (12), the boundary
conditions are of the Dirichlet type for the stream function y,
and of the Neumann type for the potential function ¢. In the
second approach, according to equations (15) and (16), the

boundary conditions for the secondary velocities are of the

Neumann type over part of the boundary.




In the course of this investigation, difficulties were
encountered in convergence of the numerical solution using
both approaches. It was found that this was mainly a result
of the inaccuracies in the calculations of the secondary
velocities, caused by the Neumann type boundary conditions.
Even with the special techniques for handling these boundary
conditions in the numerical solution of Poisson equation (4),
problems were still encountered in the convergence of both
inner and outer iterations. At that stage, we went back and
reexamined very carefully previously surveyed three dimensional
flow computations and concluded that difficulties have always
been encountered in the convergence of the inviscid flow
solutions whenever the flow exhibited rotationality. A closer
examination of the studies in references 2 and 3 revealed that
those investigators introduced, under different kinds of
justifications, what is equivalent to artificial sources and
sinks to force the convergence of their solutions. We
therefore decided to concentrate on developing an effective
method for solving the continuity and the vorticity equations
in order to avoid, if possible, the convergence problems
associated with the resulting Poisson equations with Neumann
boundary conditions.

In looking for a fresh approach, for computing the secondary

velocities, we introduced a new concept in our analysis. Instead

of using the stream and potential function, as in equations

(7) and (8), a new type of function which will be referred to
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as "The streamlike function" was defined.

The Streamlike Function

The streamlike function is defined, such that the continuity
equation (5) is identically satisfied. The secondary velocity
components (u1 and “2) are expressed in terms of the streamlike

function and the source term, S, as follows:

3x
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The deviation from the standard definition of the stream function

appears in the velocity component ug given by equation (17).

When equations (17) and (18) are substituted into equation

(6), one obtains:

37X 3 X X
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Since the continuity equation (5) is identically satisfied,

the continuity and rotationality equations are actually transformed

through the use of the streamlike function into a single

Poisson equation (19).




The condition of zero normal velocity component at the
stationary solid boundaries, is expressed in terms of the

streamlike function, Xq v as:
Xq ® = ff Xy S dxl dx2 (21)

It is clear from equation (21) that the boundary conditions for
the streamlike function are of the Dirichlet type. The novelty
of the new approach lies in the fact that instead of having
to solve two Poisson equations at each cross plane, one now
has to solve a single equation in the streamlike function.
Another advantage of the new streamlike function is the Dirichlet
boundary conditions over all the boundaries.

One should mention here that a different streamlike
function, Xor could also be defined to accomplish the same task.
The deviation from the traditional stream function definition

can be included in the u, velocity component as follows:
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The streamlike function X5 also satisfies equation (5) identically.
when the above two equations are substituted into equation (8),

one obtains:
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where

3
0, = Xj0 = X I [ s dx, (25)

A single second order equation in the streamlike function X
results also in this case, with Dirichlet boundary conditions.
The details of this new approach, as well as examples of its
applications in different flow problems has been published (Ref. 5)
as AIAA Paper No. 79-146.

The formulation of the problem in terms of the new stream-
like function is expected to result in saving computer time
and storage. One should need fewer iterations to solve the
single Poisson equation with Dirichlet boundary conditions.
In addition, we believe that the presence of the source integral
over the passage cross-sectional area in the boundary conditions
(Eg. 21) could even accelerate the convergence of the solution. For
all these reasons, the new formulation is believed to be very
important in achieving the objective of the analytical
numericel investigation. We are presently incorporating this
formulation into the numerical solution procedure. The primary
results obtained so far leads us to believe that the original

problems in the convergence of the numerical solution have

been overcome.




2. The Experimental Work

We are now in the process of building our tunnel for the
experimental flow measurements. Most of the experimental efforts
have been directed up till now at acquiring through NSF
sponsorship a Laser Doppler Velocimeter (LDV) system which will
be used in the experimental measurements. This system consists
of an argon-ion laser (Spectra Physics Model 164-09), a back
scatter type optical system, an oscilloscope, a signal
processing system (Thermo Systems, Inc., Model 1990), and a
pdp-8e computer. The laser and all the optical components
have been mounted on a traversing mechanism in order to be
able to survey the tunnel test sections. The laser-doppler
technique has been tested in a simpler flow field of another
tunnel. Aluminum oxide powder was used as the seeding material
because of the relative ease with which it can be introduced
into the flow. The accuracy of the velocity measurements
have been tested and the data was found to be reproducible and
precise enough to justify confidence in the experimental system.
This LDV system will be very useful in our measurements since
flow disturbances caused by the presence of probes in this

highly complicated three dimensional flow field will be avoided.
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